Neural Networks and Deep Learning

Hui Lin @Netlify

Ming Li @Amazon

2019-09-05

Types of Neural Network

Logistic Regression as A Neural Network

\[X=\left[\begin{array}{cccc} x_{1}^{(1)} & x_{1}^{(2)} & \dotsb & x_{1}^{(m)}\\ x_{2}^{(1)} & x_{2}^{(2)} & \dotsb & x_{2}^{(m)}\\ \vdots & \vdots & \vdots & \vdots\\ x_{n_{x}}^{(1)} & x_{n_{x}}^{(2)} & \dots & x_{n_{x}}^{(m)} \end{array}\right]\in\mathbb{R}^{n_{x}\times m}\]

\[y=[y^{(1)},y^{(2)},\dots,y^{(m)}] \in \mathbb{R}^{1 \times m}\]

\(\hat{y}^{(i)} = \sigma(w^Tx^{(i)} + b)\) where \(\sigma(z) = \frac{1}{1+e^{-z}}\)

Logistic Regression as A Neural Network

\[X=\left[\begin{array}{cccc} x_{1}^{(1)} & x_{1}^{(2)} & \dotsb & x_{1}^{(m)}\\ x_{2}^{(1)} & x_{2}^{(2)} & \dotsb & x_{2}^{(m)}\\ \vdots & \vdots & \vdots & \vdots\\ x_{n_{x}}^{(1)} & x_{n_{x}}^{(2)} & \dots & x_{n_{x}}^{(m)} \end{array}\right]\in\mathbb{R}^{n_{x}\times m}\]

\[y=[y^{(1)},y^{(2)},\dots,y^{(m)}] \in \mathbb{R}^{1 \times m}\]

\(\hat{y}^{(i)} = \sigma(w^Tx^{(i)} + b)\) where \(\sigma(z) = \frac{1}{1+e^{-z}}\)

Gradient Descent

Neural Network: 0 Layer Neural Network