
Ming Li @ Amazon

mli@alumni.iastate.edu

Hui Lin @ Netlify

hui@linhui.org

BIG DATA

DATA SCIENCE

DEEP LEARNING

FOR STATISTICIANS

mailto:mli@alumni.iastate.edu
mailto:hui@linhui.org

Links to Notebooks, Books and URLs

1. Course homepage: https://course2019.netlify.com/

2. Databrick free community edition account open: link

3. Perceptron notebook: link

4. Adaline notebook: link

5. Feedforward neural network notebook: link

6. Convolutional neural network notebook: link

7. Recurrent neural network notebook: link

8. Big Data Platform notebook: link

9. Data preprocessing notebook: link

10. Data wrangling notebook: link

11. Industry recommendations for academic data science programs: link

12. Deep Learning Using R, François Chollet with J. J. Allaire, ISBN 9781617295546 (2018)

13. Python Machine Learning by Sebastian Raschka, ISBN-13: 978-1787125933 (2018)

14. https://keras.rstudio.com/

15. http://spark.rstudio.com/

16. https://databricks.com/spark/about

17. https://github.com/onnx/onnx

https://course2019.netlify.com/
https://accounts.cloud.databricks.com/registration.html#signup/community
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/2761297084239405/1806228006848429/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/2761297084239426/1806228006848429/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/4462572393058030/1806228006848429/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/4462572393058129/1806228006848429/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/4462572393058228/1806228006848429/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/3725396058299890/1806228006848429/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/3241206203474646/1806228006848429/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/3241206203474687/1806228006848429/latest.html
https://github.com/brohrer/academic_advisory
https://keras.rstudio.com/
http://spark.rstudio.com/
https://databricks.com/spark/about
https://github.com/onnx/onnx

DEEP LEARNING

THE NEW TOOL IN DATA

SCIENTIST’S TOOL BOX

A Little Bit of History – Perceptron
• Fun video: https://www.youtube.com/watch?v=cNxadbrN_aI
• Classification of N points into 2 classes: -1 and +1 (i.e. two different colors in the picture below)
• In this example below, only two features to use (X1 and X2)

* From Sebastian Python Machine Learning

• Perceptron algorithm is easy to be implemented in any
modern program language.

• It is a linear classification function and the weight is
updated after each data points are feed to the algorithm
(concept similar to stochastic gradient descent).

• The algorithm continues to update when we feed the same
dataset again and again (i.e. epochs)

• It is not going to converge for none-linearly spreadable
problems.

X1

X2

• Linear functions to separate classes, to find (𝒘𝟎, 𝒘𝟏, 𝒘𝟐) such that:

• How to find a good line? Perceptron algorithm:
• Start with random weights
• For each data point

1. Predict class label
2. Update weights when prediction is not correct using a

preset learning rate and the value of features of that data
point, for example for 𝑤1:

𝜙𝑗 = 𝑤0 + 𝑤1𝑥1,𝑗 + 𝑤2𝑥2,𝑗

𝑃𝑟𝑒𝑑𝑗 = ൝
1, 𝑖𝑓 𝜙𝑗 > 0

−1, 𝑖𝑓 𝜙𝑗 ≤ 0

𝑤1 = 𝑤1+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙𝑗 − 𝑃𝑟𝑒𝑑𝑗 𝑥1,𝑗

https://www.youtube.com/watch?v=cNxadbrN_aI

𝜙𝑗 = 𝑤0 +𝑤1𝑥1,𝑗 + 𝑤2𝑥2,𝑗

For j in 1:N:

𝑃𝑟𝑒𝑑𝑗 = ൝
1, 𝑖𝑓 𝜙𝑗 > 0

−1, 𝑖𝑓 𝜙𝑗 ≤ 0

𝑤0 = 𝑤0+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙𝑗 − 𝑃𝑟𝑒𝑑𝑗
𝑤1 = 𝑤1+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙𝑗 − 𝑃𝑟𝑒𝑑𝑗 𝑥1,𝑗
𝑤2 = 𝑤2+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙𝑗 − 𝑃𝑟𝑒𝑑𝑗 𝑥2,𝑗

For i in 1:M:

For every data point,
we update the weight
based on the
prediction correctness,
learning rate and
feature values.

Calculate accuracy for the entire dataset to see
whether the criteria has meet after each epoch.

For not linearly separable
dataset, we need to use
some accuracy threshold to
stop the algorithm.

We set a maximum of epochs of M to run.

A Little Bit of History – Perceptron

Perceptron R notebook: link

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/2761297084239405/1806228006848429/latest.html

A Little Bit of History – Adaline

* From Sebastian Python Machine Learning
𝑤0 = 𝑤0+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙𝑗 − 𝜙𝑗
𝑤1 = 𝑤1+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙𝑗 − 𝜙𝑗 𝑥1,𝑗
𝑤2 = 𝑤2+𝜂 𝐴𝑐𝑡𝑢𝑎𝑙𝑗 − 𝜙𝑗 𝑥2,𝑗

• Very similar to Perceptron and the
only difference is that the error is

calculated based on
1

2
൫𝐴𝑐𝑡𝑢𝑎𝑙𝑗 −

• When calculating prediction
accuracy, we still based on
whether 𝜙𝑗 is larger than zero or

not with the final weight learned
from the data.

• We can use the error for the entire dataset as

the loss function (i.e. SSE): σ𝑗=1
𝑁 ൫𝐴𝑐𝑡𝑢𝑎𝑙𝑗 −

Adaline R notebook: link

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/2761297084239426/1806228006848429/latest.html

FEED FORWARD

NEURAL NETWORK

Simple Feed Forward Neural Network (FFNN)

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

ℎ1

ℎ2

ℎ3

ℎ4

ℎ𝑗 = 𝑓1 𝑏𝑗0 +

𝑖=1

3

𝑏𝑗𝑖𝑥𝑖 , 𝑗 = 1,2,3,4

𝑦𝑘 = 𝑓2 𝑏𝑘0 +

𝑗=1

4

𝑏𝑘𝑗ℎ𝑗 , 𝑘 = 1,2

𝑥1, 𝑥2, 𝑥3 : Input features vector for one observation

𝑦, 𝑦2 : Actual output outcome for one observation

𝑓1 ∙ , 𝑓2 ∙ : Activation functions, usually non-linear

Total number of parameters (i.e. size of a NN): (3+1)*4 + (4+1)*2 = 26

Concepts stated as early as 1940s!

𝐿 𝑦, ො𝑦 𝒃, 𝒙 : Loss function where ො𝑦 the model forecast responses
and 𝑦 actual observed responses

𝒚 = 𝑓2 𝑓1 𝒙, 𝒃1 , 𝒃𝟐 Vector representation

Typical Loss Functions
 Two-class binary responses

 Binary cross-entropy:

𝑖=1

𝑁

−𝑦𝑖𝑙𝑜𝑔 𝑝𝑖 − 1 − 𝑦𝑖 𝑙𝑜𝑔 1 − 𝑝𝑖

where 𝑦𝑖 is actual value of 1 or 0, 𝑝𝑖 is the predicted probability of being 1, and 𝑁 is the
total number of observations in the training data.

 Multiple-class responses
 Categorical cross-entropy for 𝑀 classes:

𝑖=1

𝑁

−

𝑗=1

𝑀

𝑦𝑖,𝑗𝑙𝑜𝑔 𝑝𝑖,𝑗

where 𝑦𝑖,𝑗 is actual value of 1 or 0 for a class of 𝑗, 𝑝𝑖,𝑗 is the predicted probability of being

at class 𝑗 and 𝑁 is the total number of observations in the training data.

 Continuous responses
 Mean square error

 Mean absolute error

 Mean absolute percentage error

From Slow Progress to Wide Adoption
1940s – 1980s, very slow progress due to:
 Computation hardware capacity limitation
 Number of observations with labeled results in the dataset
 Lack efficient algorithm to estimate the parameters in the model

1980s – 2010, a few applications in real word due to:
 Moore’s Law + GPU
 Internet generated large labeled dataset
 Efficient algorithm for optimization (i.e. SGD + Backpropagation)
 Better activation functions (i.e. Relu)

2010-Now, very broad application in various areas:
 Near-human-level image classification
 Near-human-level handwriting transcription
 Much improved speech recognition
 Much improved machine translation

Now we know working neural network models usually contains many layers (i.e. the
depth of the network is deep), and to achieve near-human-level accuracy the deep
neural network need huge training dataset (for example millions of labeled pictures
for image classification problem).

Optimization Methods
 Mini-batch Stochastic Gradient Descent (SGD)

 Use a small segment of data (i.e. 128 or 256) to update the SGD parameters:
𝑏 = 𝑏 − 𝛼𝛻𝑏𝐿 𝑏, 𝑥𝑠, 𝑦𝑠 where 𝛼 is the learning rate which is a hyper
parameter that can be changed

 Gradients are efficiently calculated using backpropagation method

 When the entire dataset are used to updated the SGD, it is called one epoch
and multiple epochs are needed to run to reach convergence

 An updated version with ‘momentum’ for quick convergence:
𝑣 = 𝛾𝑣 + 𝛼𝛻𝑏𝐿 𝑏, 𝑥𝑠, 𝑦𝑠

𝑏 = 𝑏 − 𝑣

 The optimal number for
epoch is determined by
when the model is not
overfitted (i.e. validation
accuracy reaches the best
performance).

More Optimization Methods

• With Adaptive Learning Rates
– Adagrad: Scale learning rate inversely proportional

to the square root of the sum of all historical squared
values of the gradient (stored for every weight)

– RMSProp: Exponentially weighted moving average to
accumulate gradients

– AdaDelta: Uses sliding window to accumulate
gradients

– Adam (adaptive moments): momentum integrated,
bias correction in decay

• A good summary: http://ruder.io/optimizing-
gradient-descent/

http://ruder.io/optimizing-gradient-descent/

Activation Functions

 Intermediate layers

 Relu (i.e. rectified linear unit) is usually a good choice which has the following good
properties: (1) fast computation; (2) non-linear; (3) reduced likelihood of the gradient
to vanish; (4) Unconstrained response

 Sigmoid, studied in the past, not as good as Relu in deep learning, due to the gradient
vanishing problem when there are many layers

 Last layer which connects to the output

 Binary classification: sigmoid with binary cross entropy as loss function

 Multiple class, single-label classification: softmax with categorical cross entropy for
loss function

 Continuous responses: identity function (i.e. y = x)

𝒚 = 𝑓𝑛 𝑓𝑛−1 𝑓𝑛−2 …𝑓1 𝒙, 𝒃1 … , 𝒃𝑛−2 , 𝒃𝑛−1 , 𝒃𝑛

𝜕𝒚

𝜕𝒙
=
𝜕𝒚

𝜕𝑓𝑛

𝜕𝑓𝑛

𝜕𝑓𝑛−1

𝜕𝑓𝑛−2

𝜕𝑓𝑛−1
…

𝜕𝑓1

𝜕𝒙
Gradient:

Deal With Overfitting
 Huge number of parameters, even with large amount of training data,

there is a potential of overfitting

 Overfitting due to size of the NN (i.e. total number of parameters)

 Overfitting due to using the training data for too many epochs

 Solution for overfitting due to NN size
 Dropout: randomly dropout some proportion (such as 0.3 or 0.5) of nodes at

each layer, which is similar to random forest concept

 Using L1 or L2 regularization in the activation function at each layer

 Solution for overfitting due to using too many epochs
 Run NN with large number of epochs to reach overfitting region through

cross validation from training/validation vs. epoch curve

 Choose the model with number of epochs that have the minimum validation
accuracy as the final NN model

Recap of A Few Key Concepts

 Data: Require large well-labeled dataset

 Computation: intensive matrix-matrix operation

 Structure of fully connected feedforward NN

 Size of the NN: total number of parameters

 Depth: total number of layers (this is where deep learning comes from)

 Width of a particular layer: number of nodes (i.e. neurons) in that layer

 Activation function

 Intermediate layers

 Last layer connecting to outputs

 Loss function

 Classification (i.e. categorical response)

 Regression (i.e. continuous response)

 Optimization methods (SGD)

 Batch size

 Learning rate

 Epoch

 Deal with overfitting

 Dropout

 Regularization (L1 or L2)

THE MNIST DATASET

MNIST Dataset
 Originally created by NIST, then modified for machine leaning training purpose
 Contains 70000 handwritten digit images and the label of the digit in the image

where 60000 images are the training dataset and the rest 10000 images are the
testing dataset.

 Census Bureau employees and American high school students wrote these digits
 Each image is 28x28 pixel in greyscale
 Yann LeCun used convolutional network LeNet to achieve < 1% error rate at

1990s

THE IMDB DATASET

IMDB Dataset

 Raw data: 50,000 movie review text (X) and it’s corresponding sentiment
of positive (1, 50%) or negative (0, 50%) (Y).

 Included in Keras package, can be easily loaded and preprocessed

 Preprocessing includes:
o Set size of the vocabulary (i.e. N most frequently occurring words)
o Set length of the review by padding using ‘0’ by default or truncating as we

have to have same length for all reviews for modeling
o Any words not in the chosen vocabulary replaced by ‘2’ by default
o Words are indexed by overall frequency in the chosen vocabulary

 Once the dataset is preprocessed, we can apply encoding or embedding
and then feed the data to FFNN or RNN

IMDB Dataset - Tokenization

Raw Text
This movie is great !
Great movie ? Are you kidding me ! Not worth the money.
Love it
…

Algorithm cannot deal with raw text and we have to convert text into numbers
for machine learning methods.

Tokenize
[23, 55, 5, 78, 9]
[78, 55, 8, 17, 12, 234, 33, 9, 14, 78, 32, 77, 4]
[65, 36]
…

Pad
& Truncate

[23, 55, 5, 78, 9, 0, 0, 0, 0, 0]
[78, 55, 8, 17, 12, 234, 33, 9, 14, 78]
[65, 36, 0, 0, 0, 0, 0, 0, 0, 0]
…

Now we have a typical data frame, each row is an observation, and each column is a feature.
Here we have 10 columns by designing after the padding and truncating stage. We have
converted raw text into categorical integers.

Suppose we cap unique
words to be 250, and
each one of these
unique word is replaced
with an integer. “2” will
be used for any other
words, and “0” will be
used for padding.

DEEP LEARNING MODELS

ACROSS PLATFORMS

Open NN Exchange Format (ONNX)

https://github.com/onnx/onnx

https://github.com/onnx/onnx

THANK YOU!

